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Results of molecular-dynamics computer simulations are presented for a simple microscopic model of
thermotropic liquid crystals. The system is composed of short multibead semiflexible chains where the beads
are connected by an anharmonic spring. The intermolecular bead-bead interactions are modeled by Lennard-
Jones potentials, the attractive part is taken into account only between the stiff parts. Heating the system, solid,
smectic-A, and liquid phases are found. For the symmetric molecules and anisotropic potentials studied first,
the smectic-A phase is clearly defined over a wide range of temperatures, whereas the nematic phase is not
present or too narrow in temperature to be seen clearly. The evolution of the systems has also been studied as
a function of the length of flexible parts and the strength of the stiff-stiff potential.@S1063-651X~96!00211-5#

PACS number~s!: 61.30.Cz, 02.70.Ns, 64.70.Md

I. INTRODUCTION

Thermotropic liquid crystals form mesophases intermedi-
ate between a solid phase at low temperatures and an isotro-
pic liquid phase at high temperatures@1–3#. Nematic liquid
crystals possess an orientational order of the molecular axes,
but no long-range positional order, complementary to plastic
crystals, which have a crystal-like positional order, but a dy-
namical orientational disorder@4,5#. Smectic liquid crystals,
in particular those referred to as Sm-A and Sm-C, have a
nematiclike orientational order and in addition their centers
of mass are confined to layers. Computational studies of the
material properties of complex fluids by molecular dynamics
~MD! are feasible and desirable for models that, on the one
hand, are simple enough to allow efficient simulations and,
on the other hand, catch those features that are typical for the
intermolecular interactions.

Previous computational studies on the phase behavior of
model liquid crystals by MD and Monte Carlo simulations
have been performed on various levels of simplification of
the molecular interactions@6,7#. The first atomistic simula-
tions of the nematic phase of 4-n-pentyl-48-cyanobiphenyl
~5CB! compounds@8#, the smectic multibilayer@9,10#, and
discotic phases@11# were still too limited in the size of the
systems and the durations of the runs. Simulations of the
Lebwohl-Lasher lattice model@12,13# gave hints of the basic
features of the phase transitions. The simplest approach
where the dynamics of the centers of mass of the particles
are properly taken into account is to treat molecules as stiff
nonspherical particles such as ellipsoids or spherocylinders
or to consider particles interacting by a Gay-Berne potential
@14–16#. Going further, the internal configuration has been
taken into account by treating the molecules as being com-
posed of interaction sites~monomers! connected by formu-
lating constraints or binding forces. Both Monte Carlo
@9,17–19# and molecular-dynamics methods@20–22# were
applied to study the static and dynamic properties, respec-
tively. With the advent of new generations of supercomput-

ers, modern workstations, and new techniques@23#,
simulations of complex real systems are now possible
showing good agreement with the experimental results@24#,
such as for the nematic phase of 5CB@25,26# or the
smectic-C phase ofp-~n-decyloxybenzylidene!-p-amino-2-
methylbutylcinnamate@21# at moderate time and length
scales. Allen@27# recently simulated extremely huge com-
pounds such as lipids in the liquid-crystalline phase@28#.
However, from a physical point of view the construction of
model interactions remains in question and from a technical
point of view the development of efficient parallel codes
@29–31# becomes more and more difficult due the complex-
ity of the models that involve long-range electrostatic forces
or many-body potentials.

To overcome parts of these problems, to extend former
models, and to study bulk properties of liquid crystals in this
work we consider a model fluid composed of partially stiff
and partially flexible molecules as they occur in most real
thermotropic liquid crystals~cf. Fig. 1!. The model is ana-
lyzed by applying the molecular-dynamics method in order
to provide complete information about the phase-space dy-
namics. Precisely, our model system is composed of a num-
ber of short chains where ten~or eleven! monomers~beads!
are connected by finitely extendable nonlinear elastic
~FENE! springs, an approach that is of use in simulations of
polymeric liquids@32,33#. For each molecule, the central part
~four or five beads! is stiff, while both terminals are flexible.
The lengths of both stiff and flexible parts are parameters of
the model. The intermolecular bead-bead interactions are
Lennard-Jones~LJ! potentials, whose attractive part is taken
into account only between the monomers in stiff parts. The
strength of the attractive part is controlled by a parameter
eatt. For the particular model parameters used first, a phase
transition Sm-A–isotropic liquid was found both by heating
and cooling the sample. Although the absence of an interme-
diate nematic phase seems to be surprising at first glance, a
number of liquid-crystalline compounds do have such a
phase behavior. Before material properties such as diffusion,
elasticity, or viscosity coefficients are computed, the phase
behavior of the system under investigation is to be deter-
mined. For comparison with the simulations of@34#, some
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calculations for stiff chains without flexible ends are also
performed.

This paper is organized as follows. In Sec. II the model
for semiflexible liquid crystals is presented and details of the
simulation are given. Section III contains the results of the
simulation for heating and cooling. The influence of the
strength of the attractive potential for different lengths of
rigid and flexible parts is discussed. Conclusions are given in
Sec. IV.

II. MODEL AND DETAILS OF THE SIMULATION

The model system is composed ofNc multibead chains
with typically nb510 beads per chain. Neighboring beads
within chains are connected by an anharmonic FENE spring.
The potentials are given in Sec. II A. Here each chain, as
shown in Fig. 1, is made of two identical terminal flexible
parts (nflex beads!, and a stiff central stiff part (nstiff beads!,
wherenstiff123nflex5nb .

The notation (nflex-nstiff-nflex) is used here to define the
different systems. For example,3-4-3 means that the chains
in this system are composed of a central stiff part of four
beads and two terminal flexible parts of three beads. The
simulations are performed in theNVT statistical ensemble,
where the total number of beads (N5Ncnb), the volume
(V), and the temperature (T) are fixed. The temperature is
kept constant by rescaling all velocities at every time step
@35#. The geometry of the system is a parallelepiped box
(Lx5Ly.

1
3Lz) with periodic boundary conditions@36# in or-

der to study bulk properties. Newton’s equations of motion
for this classical many particles problem are integrated by

the Verlet algorithm@37# in a molecular-dynamics computer
simulation. Throughout this paper all quantities are ex-
pressed in the usual LJ reduced units@35#.

We will present results for a system ofNc5288 chains of
lengthnb510 at bead number densityr[N/V50.8. An ini-
tial low temperature solid phase is chosen as a fcc structure
(43434 cells! where all chains are parallel along thez
direction. Considering the intramolecular vibrations@38#, an
integration time step ofDt50.005 is used.

A. Model potentials

Two types of potentials are used: a Lennard-Jones poten-
tial ULJ ~full and truncated versions! and an attractive FENE
potentialUFENE used previously to study flexible polymers
@38,39,33#,

ULJ
rep5H 4 @r2122r2611/4# for r<21/6

0 for r.21/6
~1!

and

ULJ
att5H 2eatt for r<21/6

4eatt@r
2122r26# for 21/6,r<2.5

0 for r.2.5 ,

~2!

where r is the distance between two interaction centers
~beads!, ULJ

rep corresponds to a purely repulsive LJ potential,
andULJ

att corresponds to a purely attractive LJ potential. The
strength of the attractive LJ potentialULJ

att is parametrized by
eatt. The FENE potential is written as

UFENE5H 20.5kR0
2ln@12~r /R0!

2# for r<R0

` for r.R0 ,
~3!

with R051.5 andk530 as in@38,33#.
The radial symmetric interaction potentialUa i ,b j

total (r ) for
the model fluid between beadi of chaina ~coordinatesra

i )
and bead j of chain b, where i , jP1, . . . ,nb and a,b
P1, . . . ,Nc , is written as

Ua i ,b j
total ~r !

[ULJ
rep~r !1da,b d1,u i2 j u UFENE~r !

1da,b d i1 j ,nb11 d r stiff ,u i2 j u @ULJ
rep1UFENE#~r /r stiff!

1Q~nstiff2u2i2nb21u!d i ,u j1fab~nb11!u

3~12da,b! ULJ
att~r ! , ~4!

with fab50 andfab521 for ‘‘parallel’’ and ‘‘antiparal-
lel’’ chainsa,b, respectively, which can be written formally
as

fab[Q~raa
nflex11,nb2nflex

•rbb
nflex11,nb2nflex!21 . ~5!

Hererab
i j 5ra

i 2rb
j is the vector connecting two bead coordi-

nates and the contour length of the stiff part is
r stiff[nstiff21. The terms involving the step functionQ with
Q(x)51 for x.0 andQ(x)50 for x<0 in Eqs.~4! and~5!

FIG. 1. Comparison between a modeled chain with stiff and
flexible parts (nflex-nstiff-nflex) and real compounds that present
nematic and/or smectic phases.
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ensure that the labeling of the particles within the chains
does not violate the head-tail symmetry. The term
Q(nstiff2u2i2nb21u) vanishes except for beads within the
stiff part, i.e., for iP@nflex11,nb2nflex#. For pairs of beads
i , j of this type on different chainsa,b, the Kronecker sym-
bol d i ,u j1fab(nb11)u is nonvanishing fori5 j ~parallel! and

i5nb2 j11 ~antiparallel chains!.
Hence there are four qualitatively different bead-bead in-

teractions in the model written as a combination of the po-
tentials defined in Eqs.~2! and ~3!. Figure 2 shows interac-
tions in play between two representative chains. According
to ~4! all beads are interacting with aULJ

rep Lennard-Jones
potential; directly connected beads in the chain interact with
theUFENE attractive potential. The central part of each chain
is kept stiff with a weak ‘‘rod potential’’ between two termi-
nals of the stiff part; ‘‘corresponding’’ beads of stiff parts of
different chains interact via the attractive potentialULJ

att,
which results in an effectively anisotropic interaction be-
tween stiff parts. Its depth can be adjusted by the parameter
eatt.

B. Characterization of the system

1. Static structure factor

The static structure factor of the model fluid where each
bead is assumed to act as a ‘‘scatterer’’ is

S~k!5
1

N K U(
a51

Nc

(
j51

nb

exp~ ik•r j
a!U2L 5SSC~k! Sinter~k!.

~6!

HereSSC is the single-chain static structure factor represent-
ing the intramolecular correlations

SSC~k!5
1

N(
a51

Nc K U(
j51

nb

exp~ ik•r j
a!U2L , ~7!

wherer j
a is the position of the beadj of the moleculea, k

the relevant wave vector, andN5Ncnb the total number of
beads@33#. The static structure factorS(k) is restricted to
k5uku5p(2p/Lx) (p an integer! because of the geometry of
the system, which is a parallelepiped box (Lx5Ly.

1
3Lz)

with periodic boundary conditions. The single-chain static
structureSSC(k) is not subject to this restriction fork be-
cause it can be calculated from the unfolded chains, indepen-
dent of the size of the basic simulation box.

A long-range positional order could be revealed by
Bragg-like peaks in the static structure factorSc.m.(k), where
the centers of mass of the molecules are taken as scatterers.
The height of the Bragg peaks approachNc for a system
composed ofNc molecules. Due to the initial preparation of
the system, such peaks would show up for wave vectorsk
parallel to thez direction. For a system with a layer distance
d a peak occurs atk5 2p/d. Its height divided byNc pro-
vides a convenient measure for the degree of positional or-
der. Thus we use the ‘‘positional order parameter’’s,

s5U K 1

Nc
(
j51

Nc

expS 2ipzjd D L U , ~8!

wherezj is the z coordinate of the center of mass of chain
j and ^ & denotes the average over time. The layer distance
d is about the length of the chain and we chosed5nb21.
The detailed calculation ofSc.m.(k) is not made because of
the inappropriate resolution of the wave vectorsk compat-
ible with the simulation box. The intramolecular structure
factorSSC, which contains information on the distance and
the orientations of the beads within a single chain, however,
can be computed reliably and examples will be presented.

2. Macroscopic orientational order parameters

We define the direction of the rigid part of a chain as the
main symmetry molecular axisa. Classically, the macro-
scopical orientational~Maier-Saupe! order parameterS2 is
computed from the knowledge of all molecular axesa. An
instantaneous alignment tensor is defined as

Qab5
1

Nc
(
i51

Nc 3

2 F ~ai !a~ai !b2
1

3
dabG , ~9!

whereNc is the number of chains in the system and (ai)a are
the Cartesian coordinates (a5x,y,z) of the axis of chaini
( i51,2, . . . ,Nc). The time average of the largest eigenvalue
of the alignment tensorQab is equal to the orientational
order parameterS2 and the associated eigenvector gives the
macroscopic directorn @40#. In the case of uniaxial orienta-
tional order of molecules the alignment tensor reads
Qab5S2(nanb2 1

3dab).
To characterize the flexibility along the chains, we com-

puted the average anglesustiff anduflex between two succes-
sive segments in flexible and stiff parts, respectively. They
are defined as:

FIG. 2. Bead-bead interactions. In addition to the interactions
indicated in this figure, there are also a FENE interaction between
all connected beads in chains and a repulsive Lennard-Jones be-
tween all beads of the system.
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ustiff,flex5^uuau&stiff,flex ,
~10!

cosua5
da •da21

udau•uda21u
,

where ^ &stiff and ^ &flex , respectively, denote the averages
over all successive segments in stiff and flexible parts. The
anglesustiff and uflex are the average angles between two
successive segments (da and da21 are vectors between
neighboring beads within chains! in stiff and flexible parts,
respectively.

III. RESULTS

Results are presented from the molecular-dynamics com-
puter simulation on monodisperse systems made of 2880
beads forming 288 chains at bead number density 0.8. If we
do not explicitly cite the values for the stiff-stiff interaction
parametereatt, it is set toeatt51.

A. Chains with a central stiff and two flexible parts „3-4-3…

1. Heating

We heated the system using a temperature step of
DT50.1 starting at the low-temperature solid phase with
preferential axisz to the high-temperature isotropic phase. At
each temperature step a minimum stabilization time of
t5103 ~corresponding to 23105 time steps! has been taken
~by increasing near transitions untilt5105). Computation of
order parametersS2 ands at different temperatures~Fig. 3!
and associated snapshots~Fig. 4! show that our system pre-
sents clearly three different phases.

First, we observe a solid phase for 0<T.0.75. The ori-
entational order parameter is equal toS2.0.98 and the po-
sitional parameter orders.1.0. In this phase, the chains

remain completely parallel to the initial axis for both flexible
and stiff parts. The single-chain static structure factor
SSC(kx50,ky ,kz) displayed in Fig. 5~a! at T50.74 confirms
the alignment of the chains. The functionSSC is perfectly
periodic along thekz direction with a period equal to the
inverse distance between two connected beads and it is prac-
tically independent ofky . A Sm-A-like phase occurs be-
tweenT.0.75 andT.1.2. The parametersS2 and s de-
crease simultaneously at the clearing point, which is the
transition point between the liquid-crystalline phase~nematic
or smectic! and the isotropic liquid phase. The parameters
S2 and s decrease further by increasing the temperature.
Within the available precision of the simulated quantities a
nematic phase is not seen. At the clearing point, we observe
also that the degree of flexibility increases strongly~cf. Fig.
6! in the flexible parts fromuflex.5° to uflex.60°, while it
remains low in the stiff partustiff.10°, independent of tem-
perature. In fact, above the clearing point, the beads in flex-
ible parts become completely free to move and all angles
between 0° and.120° are possible, which results in an
average angle of approximately 60°. Only at low tempera-
ture isustiff is greater thanuflex , which is surprising. In this
regime the disorder in the stiff part could be related to inter-
nal low-frequency vibrations due to the rod potential
(UFENE1ULJ

rep) that is used to keep the stiff part stretched.
The single-chain static structure factorSSC(kx50,ky ,kz) at
T51.0 is displayed in Fig. 5~b!. The functionSSC is periodic
along a direction slightly different from the directionkz . For
T.1.2, finally, we observe a liquidlike phase whereS2 and
s are slightly above zero but not zero. In fact, steric hin-
drances remain in the system and prevent it from being com-
pletely isotropic (S250). The radical symmetric single-
chain static structure factorSSC(kx50,ky ,kz) at T51.4
displayed in Fig. 5~d! identifies the isotropic liquid.

2. Cooling

From the configuration of the system atT.2 we cooled
the sample using a temperature step ofDT.0.1. The system
does not return to a smectic phase with layers normal to the
z direction ~cf. Fig. 4!. In fact, as we started by cooling the
system from the isotropic phase high above the clearing
point, the system lost the global preferential orientation. To
obtain global order of the smectic layers one could apply an
external electric field that induces a preferential orientation
@41#. For T50.7 andT50.8, Fig. 7 shows that the system

FIG. 3. Orientational order parameterS2 and positional order
parameters at different temperatures, for the3-4-3 system, ob-
served in heating and cooling.

FIG. 4. Snapshots of the stiff part of each molecules projected
on the xz and yz planes at different temperatures~from left to
right!: T50.50, 0.85, 0.90, 1.00, 1.10, and 1.40 of the3-4-3
system.
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returns to a smectic phaselocally, with the appearance of
domains where both orientational and positional order are
present~two or three layers smectic-A-like!. Globally, orien-
tational order~cf. Fig. 3! is present. In each domain, the
value of the orientational order parameterS2 is comparable
to the values found in heating. However, globally we found a
smaller valueS2.0.4 due the different preferred orientations
in the different domains. The single-chain static structure
factorSSC(kx50,ky ,kz) at T50.8 @cf. Fig. 5~c!# shows two
preferential directions@011# and @01̄1#, unlike the smectic
phase observed atT51.0, which are linked with the domains
shown in the snapshots of Fig. 4.

3. Pressure and energy

This description of the evolution of the sample as a func-
tion of the temperature in three different parts corresponding
to the solid, smectic, and isotropic phase is confirmed by the
evolution of the pressure tensor and the energy. The contri-
bution to the energy from the stiff-stiff interaction, which is
the sum of all the attractive interactions (ULJ

att) between the
stiff parts, is particularly sensitive to the phase changes and
is displayed in Fig. 8. The scalar pressurep is one-third of

the trace of the pressure tensorp5 1
3(Pxx1Pyy1Pzz). The

normal pressure differencep05
1
2@Pzz2

1
2(Pxx1Pyy)] char-

acterizes an anisotropy of the pressure tensor. The scalar
pressurep and the normal pressure differencep0 are shown
in Fig. 9. The normal pressure difference is nonzero in the
solid phase. This reflects the extremely anisotropic con-
straints that keep the chains quasi-perfectly parallel to thez
directions, as one can see in Fig. 4. At the transition where
the chains become flexible~cf. Fig. 6! p0 decreases strongly
to zero. When heating the sample, the average pressurep and
the stiff-stiff energy show a discontinuity that corresponds to
the solid-smectic transition. When cooling the system, the
curve for the pressure components and the energy also show
strong changes at the isotropic-smectic transition. The shear
components of the pressure such asp15Pxy or p25 1

2

(Pxx2Pyy) remain equal to zero at every temperature we
simulated.

4. Effects of the attractive interaction

The system presents betweenT.0.75 and T.1.2 a
smectic-A phase. The attractive Lennard-Jones potential
ULJ
att favors the smectic phase as it keeps the molecules par-

FIG. 5. Single-chain static structure factorSSC as projected onto thex plane (kx50) at different temperatures~a! T50.74, ~b!
T51.00, ~c! T50.80, and~d! T51.40 for the3-4-3 system.
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allel and in layers. By varying the parametereatt, we inves-
tigated the influence of the attractive interaction on the sta-
bility of the smectic phase.

The parametereatt has been chosen to be initially fixed at
the valueeatt51. Figure 10 showsS2 ands parameters, both
as function of the parametereatt. From a smectic configura-
tion at T50.8, we changed the value of the parametereatt
and let the system stabilize at the same temperature. Clearly,
we can see that bothS2 and s parameters are decreasing
both to values close above zero. This result shows within the
precision of our simulation, that the layers in the sample are
less and less well defined but still exist and also that the
system does not evolve from the smectic to the nematic
phase but directly to the isotropic phase when lowering the

attractive interaction parameter.

B. Completely stiff chains „0-10-0…

1. Heating

It has been observed experimentally that the length of
flexible terminals influences the occurrence of smectic and
nematic phases@42,43#. In real systems, typically composed
of a central aromatic part and two flexible alkyl terminal
chains, there exists a strong dispersion interaction between
aromatic parts and if flexible terminals are long enough to
separate aromatic cores a smectic state can occur@42,43#.

For the system studied in@34#, no flexible part is present
and the smectic phase is almost nonexistent, while the nem-
atic phase is very large. In Sec. III A our system was rather

FIG. 6. Angular disorder along the chains in the stiff parts and
flexible parts that corresponds to the average angle between two
segments defined in Eq.~10!, for the3-4-3 system.

FIG. 7. Snapshots of the stiff part of each molecules projected
onto thexz and yz planes at different temperatures~from left to
right!: T50.70, 0.80, 1.00, 1.20, and 1.40 for the3-4-3 system.

FIG. 8. Stiff-stiff energy, observed in heating and cooling, as a
function of the temperature for the3-4-3 system.

FIG. 9. Scalar pressurep and normal pressure difference2p0
as a function of the temperature in heating and cooling for the3-4-3
system.
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at the opposite, short stiff part~four beads! and long flexible
terminals~six beads!: we observed no nematic phase, but a
large smectic phase. It is now interesting to study, by de-
creasing the length of the flexible parts and hence increasing
the length of the stiff one in keeping chains with same
length, if we do observe a nematic phase. We simulated a set
of chains without a flexible part~0-10-0!, which corresponds
to the system in@34#, but in addition we take into account
intramolecular interactions. Figure 11 shows snapshots of the
chains projected onto thexy, xz, andyz planes, respectively,
at different temperatures. AtT.3.0 a transition occurs be-
tween the solid phase and a smectic phase, which is a tilted
‘‘pseudohexagonal’’ phase. The transition temperature is
higher than the transition temperature observed for the sys-
tem 3-4-3. This increase of transition temperature when the
central rigid part length increases has been observed experi-

mentally @42#. The systems order parameter decreases from
S2.0.98 toS2.0.82. The positional order in the layers can
be deduced from the center-of-mass snapshots onxy planes,
which present a fcc symmetry in the solid phase~initial con-
figuration! and a hexagonal symmetry above the melting
temperature, which becomes more and more disordered
when temperature increases.

Above T.5 the chains tend to break due to the kinetic
disorder. The study of high temperaturesT.5 would be re-
quired to observe the nematic and isotropic phases. In@34#
the clearing point has been observed atT.16. Theoretically
the chains are not allowed to break due to the features of
intramolecular bond potential~FENE! @see Eq.~3!#, but nu-
merically chains can break because of the discrete time step
used to integrate the equations of motion. The phenomenon
of purposefully breaking the chains for a comparable FENE
chain model with a finite depth of the binding potential has
been studied recently@44#.

2. Effects of attractive interaction (eatt)

For the 0-10-0 system, as for the3-4-3 system, we
changed the value of the parametereatt to observe the influ-
ence of the attractive potential. AtT53.00, S2(eatt51)
.0.8260.02 and S2(eatt50).0.7960.01, while
s(eatt51).0.99 ands(eatt50).0.8360.03. As expected,
we observe a disordered smectic phase, but no appearance of
a nematic phase within the limited range of accessible tem-
peratures.

IV. CONCLUSION

Solid, smectic, and liquid phases have been found in
studying a simple microscopic model of thermotropic liquid
crystals by molecular-dynamics computer simulations. Sym-
metric molecules~identical flexible parts! and anisotropic
potentials were studied first for semiflexible chains. The
model differs considerably from previous models and can be
regarded as the most simple approach to model different
types of semiflexible chains without introducing nonspheri-
cal particles or constraint forces.

All interactions are effectively short ranged and fixed by
very few parameters in contradistinction to atomistic simula-
tions for which the research of the potentials itself is part of
the work. Due to this feature we obtained very good perfor-
mance on supercomputers and were able to simulate a large
domain of temperatures, which is not the case for the most
recent atomistic simulations as cited in the Introduction. Fur-
ther relevance of the model will have to be shown in com-
parison with experimental results on chains with well-
defined semiflexibility.

From our model for the chain lengths studied here the
smectic phase is well defined over a wide range of tempera-
tures, whereas the nematic phase is not present or too narrow
in temperature to be seen clearly. The influence of an inter-
molecular attractive interaction, controlled by the parameter
eatt, has been analyzed. The smectic phase becomes more
and more disordered when the attractive potential decreases,
but does not lead to the appearance of a nematic phase.

The influence of the flexibility of the chains has been
studied for chain lengths ofnb.10 with different distribu-
tions of stiff and flexible parts. Table I shows that there is

FIG. 10. Order parametersS2 ands as a function ofeatt at the
temperatureT50.8 for the3-4-3 system.

FIG. 11. Snapshots of the stiff part of each molecule projected
onto thexz and yz planes at different temperatures~from left to
right!: T52.0, 3.5, 4.0, and 5.0 for the0-10-0 system.
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qualitative agreement with experiments for the increase of
the clearing temperatures as well as for the melting tempera-
tures when the length of the stiff part increases. This result
has been confirmed by additional simulation runs for the
system3-5-3 not described in detail in the present paper.

Three conjectures to observe the nematic phase can be
made for systems composed of chainlike molecules as con-
sidered here.~i! For systems with completely stiff molecules
comparable to the system of Paoliniet al. @34#, where the
nematic phase is pronounced in a broad temperature regime
in contradistinction to the smectic phase, which appears in a
small temperature interval, the investigation of our systems
at temperatures higher thanT55 could be performed with a
modification of the rod potential, e.g., by introducing a
temperature-dependent depth in order to stabilize the struc-
ture of the stiff part@45#. ~ii ! The system we simulated fol-
lows qualitatively the typical experimental phase diagram
shown in Fig. 12, where our samples correspond to relatively
short chains. Therefore, we can expect to favor a nematic
phase if we simulate longer chainsnb@10. ~iii ! As observed
experimentally~cf. Fig. 1!, nonsymmetric molecules tend to
favor the nematic phase. Therefore, simulations for the
(nflex-nstiff-nflex8 )-type molecules, wherenflexÞnflex8 , are de-
sirable.

The model and the method presented here can be ex-
tended to study nonequilibrium situations, e.g., flow pro-
cesses. Rheological quantities could be extracted directly
from the microscopic knowledge of all bead positions and
bead velocities in analogy to previous studies of polymeric
model liquids@35,33#.
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